syncopy.specest.compRoutines.MultiTaperFFTConvol

class syncopy.specest.compRoutines.MultiTaperFFTConvol(*argv, **kwargs)[source]

Compute class that performs time-frequency analysis of AnalogData objects

Sub-class of ComputationalRoutine, see Design Guide: Syncopy Compute Classes for technical details on Syncopy’s compute classes and metafunctions.

See also

syncopy.freqanalysis

parent metafunction

__init__(*argv, **kwargs)

Instantiate a ComputationalRoutine subclass

Parameters
Returns

obj – Usable class instance for processing Syncopy data objects.

Return type

instance of ComputationalRoutine-subclass

Methods

__init__(*argv, **kwargs)

Instantiate a ComputationalRoutine subclass

compute(data, out[, parallel, ...])

Central management and processing method

computeFunction(trl_dat, soi, postselect[, ...])

Perform time-frequency analysis on multi-channel time series data using a sliding window FFT

compute_parallel(data, out)

Concurrent computing kernel

compute_sequential(data, out)

Sequential computing kernel

initialize(data, out_stackingdim[, ...])

Perform dry-run of calculation to determine output shape

preallocate_output(out[, parallel_store])

Storage allocation and provisioning

process_metadata(data, out)

Meta-information manager

write_log(data, out[, log_dict])

Processing of output log

Attributes

valid_kws

static computeFunction(trl_dat, soi, postselect, equidistant=True, toi=None, foi=None, nTaper=1, tapsmofrq=None, timeAxis=0, keeptapers=True, polyremoval=0, output_fmt='pow', noCompute=False, chunkShape=None, method_kwargs=None)

Perform time-frequency analysis on multi-channel time series data using a sliding window FFT

Parameters
  • trl_dat (2D numpy.ndarray) – Uniformly sampled multi-channel time-series

  • soi (list of slices or slice) – Samples of interest; either a single slice encoding begin- to end-samples to perform analysis on (if sliding window centroids are equidistant) or list of slices with each slice corresponding to coverage of a single analysis window (if spacing between windows is not constant)

  • samplerate (float) – Samplerate of trl_dat in Hz

  • noverlap (int) – Number of samples covered by two adjacent analysis windows

  • nperseg (int) – Size of analysis windows (in samples)

  • equidistant (bool) – If True, spacing of window-centroids is equidistant.

  • toi (1D numpy.ndarray or float or str) – Either time-points to center windows on if toi is a numpy.ndarray, or percentage of overlap between windows if toi is a scalar or “all” to center windows on all samples in trl_dat. Please refer to freqanalysis() for further details. Note: The value of toi has to agree with provided padding and window settings. See Notes for more information.

  • foi (1D numpy.ndarray) – Frequencies of interest (Hz) for output. If desired frequencies cannot be matched exactly the closest possible frequencies (respecting data length and padding) are used.

  • nTaper (int) – Number of tapers to use

  • timeAxis (int) – Index of running time axis in trl_dat (0 or 1)

  • taper (callable) – Taper function to use, one of availableTapers

  • taper_opt (dict) – Additional keyword arguments passed to taper (see above). For further details, please refer to the SciPy docs

  • keeptapers (bool) – If True, results of Fourier transform are preserved for each taper, otherwise spectrum is averaged across tapers.

  • polyremoval (int) – Order of polynomial used for de-trending data in the time domain prior to spectral analysis. A value of 0 corresponds to subtracting the mean (“de-meaning”), polyremoval = 1 removes linear trends (subtracting the least squares fit of a linear polynomial). Detrending is done on each segment! If polyremoval is None, no de-trending is performed.

  • output_fmt (str) – Output of spectral estimation; one of availableOutputs

  • noCompute (bool) – Preprocessing flag. If True, do not perform actual calculation but instead return expected shape and numpy.dtype of output array.

  • chunkShape (None or tuple) – If not None, represents shape of output object spec (respecting provided values of nTaper, keeptapers etc.)

  • method_kwargs (dict) – Keyword arguments passed to mtmconvol() controlling the spectral estimation method

Returns

spec – Complex or real time-frequency representation of (padded) input data.

Return type

numpy.ndarray

Notes

This method is intended to be used as computeFunction() inside a ComputationalRoutine. Thus, input parameters are presumed to be forwarded from a parent metafunction. Consequently, this function does not perform any error checking and operates under the assumption that all inputs have been externally validated and cross-checked.

The computational heavy lifting in this code is performed by SciPy’s Short Time Fourier Transform (STFT) implementation scipy.signal.stft().

See also

syncopy.freqanalysis

parent metafunction

MultiTaperFFTConvol

ComputationalRoutine instance that calls this method as computeFunction()

scipy.signal.stft

SciPy’s STFT implementation

valid_kws = ['samplerate', 'nperseg', 'noverlap', 'taper', 'taper_opt', 'boundary', 'padded', 'detrend', 'soi', 'postselect', 'equidistant', 'toi', 'foi', 'nTaper', 'tapsmofrq', 'timeAxis', 'keeptapers', 'polyremoval', 'output_fmt', 'noCompute', 'chunkShape', 'method_kwargs', 'tapsmofrq', 't_ftimwin', 'nTaper']
process_metadata(data, out)[source]

Meta-information manager

Parameters
  • data (syncopy data object) – Syncopy data object that has been processed

  • out (syncopy data object) – Syncopy data object holding calculation results

Returns

Nothing

Return type

None

Notes

This routine is an abstract method and is thus intended to be overloaded. Consult the developer documentation (Design Guide: Syncopy Compute Classes) for further details.

See also

write_log

Logging of calculation parameters

__init__(*argv, **kwargs)

Instantiate a ComputationalRoutine subclass

Parameters
Returns

obj – Usable class instance for processing Syncopy data objects.

Return type

instance of ComputationalRoutine-subclass

compute(data, out, parallel=False, parallel_store=None, method=None, mem_thresh=0.5, log_dict=None, parallel_debug=False)

Central management and processing method

Parameters
  • data (syncopy data object) – Syncopy data object to be processed (has to be the same object that was used by initialize() in the pre-calculation dry-run).

  • out (syncopy data object) – Empty object for holding results

  • parallel (bool) – If True, processing is performed in parallel (i.e., computeFunction() is executed concurrently across trials). If parallel is False, computeFunction() is executed consecutively trial after trial (i.e., the calculation realized in computeFunction() is performed sequentially).

  • parallel_store (None or bool) – Flag controlling saving mechanism. If None, parallel_store = parallel, i.e., the compute-paradigm dictates the employed writing method. Thus, in case of parallel processing, results are written in a fully concurrent manner (each worker saves its own local result segment on disk as soon as it is done with its part of the computation). If parallel_store is False and parallel is True the processing result is saved sequentially using a mutex. If both parallel and parallel_store are False standard single-process HDF5 writing is employed for saving the result of the (sequential) computation.

  • method (None or str) – If None the predefined methods compute_parallel() or compute_sequential() are used to control the actual computation (specifically, calling computeFunction()) depending on whether parallel is True or False, respectively. If method is a string, it has to specify the name of an alternative (provided) class method (starting with the word “compute_”).

  • mem_thresh (float) – Fraction of available memory required to perform computation. By default, the largest single trial result must not occupy more than 50% (mem_thresh = 0.5) of available single-machine or worker memory (if parallel is False or True, respectively).

  • log_dict (None or dict) – If None, the log properties of out is populated with the employed keyword arguments used in computeFunction(). Otherwise, out’s log properties are filled with items taken from log_dict.

  • parallel_debug (bool) – If True, concurrent processing is performed using a single-threaded scheduler, i.e., all parallel computing task are run in the current Python thread permitting usage of tools like pdb/ipdb, cProfile and the like in computeFunction(). Note that enabling parallel debugging effectively runs the given computation on the calling machine locally thereby requiring sufficient memory and CPU capacity.

Returns

Nothing – The result of the computation is available in out once compute() terminated successfully.

Return type

None

Notes

This routine calls several other class methods to perform all necessary pre- and post-processing steps in a fully automatic manner without requiring any user-input. Specifically, the following class methods are invoked consecutively (in the given order):

  1. preallocate_output() allocates a (virtual) HDF5 dataset of appropriate dimension for storing the result

  2. compute_parallel() (or compute_sequential()) performs the actual computation via concurrently (or sequentially) calling computeFunction()

  3. process_metadata() attaches all relevant meta-information to the result out after successful termination of the calculation

  4. write_log() stores employed input arguments in out.cfg and out.log to reproduce all relevant computational steps that generated out.

Parallel processing setup and input sanitization is performed by ACME. Specifically, all necessary information for parallel execution and storage of results is propagated to the ParallelMap context manager.

See also

initialize

pre-calculation preparations

preallocate_output

storage provisioning

compute_parallel

concurrent computation using computeFunction()

compute_sequential

sequential computation using computeFunction()

process_metadata

management of meta-information

write_log

log-entry organization

acme.ParallelMap

concurrent execution of Python callables

compute_parallel(data, out)

Concurrent computing kernel

Parameters
  • data (syncopy data object) – Syncopy data object to be processed

  • out (syncopy data object) – Empty object for holding results

Returns

Nothing

Return type

None

Notes

The actual reading of source data and writing of results is managed by the decorator syncopy.shared.parsers.unwrap_io().

See also

compute

management routine invoking parallel/sequential compute kernels

compute_sequential

serial processing counterpart of this method

compute_sequential(data, out)

Sequential computing kernel

Parameters
  • data (syncopy data object) – Syncopy data object to be processed

  • out (syncopy data object) – Empty object for holding results

Returns

Nothing

Return type

None

Notes

This method most closely reflects classic iterative process execution: trials in data are passed sequentially to computeFunction(), results are stored consecutively in a regular HDF5 dataset (that was pre-allocated by preallocate_output()). Since the calculation result is immediately stored on disk, propagation of arrays across routines is avoided and memory usage is kept to a minimum.

See also

compute

management routine invoking parallel/sequential compute kernels

compute_parallel

concurrent processing counterpart of this method

initialize(data, out_stackingdim, chan_per_worker=None, keeptrials=True)

Perform dry-run of calculation to determine output shape

Parameters
  • data (syncopy data object) – Syncopy data object to be processed (has to be the same object that is passed to compute() for the actual calculation).

  • out_stackingdim (int) – Index of data dimension for stacking trials in output object

  • chan_per_worker (None or int) – Number of channels to be processed by each worker (only relevant in case of concurrent processing). If chan_per_worker is None (default) by-trial parallelism is used, i.e., each worker processes data corresponding to a full trial. If chan_per_worker > 0, trials are split into channel-groups of size chan_per_worker (+ rest if the number of channels is not divisible by chan_per_worker without remainder) and workers are assigned by-trial channel-groups for processing.

  • keeptrials (bool) – Flag indicating whether to return individual trials or average

Returns

Nothing

Return type

None

Notes

This class method has to be called prior to performing the actual computation realized in computeFunction().

See also

compute

core routine performing the actual computation

preallocate_output(out, parallel_store=False)

Storage allocation and provisioning

Parameters
  • out (syncopy data object) – Empty object for holding results

  • parallel_store (bool) – If True, a directory for virtual source files is created in Syncopy’s temporary on-disk storage (defined by syncopy.__storage__). Otherwise, a dataset of appropriate type and shape is allocated in a new regular HDF5 file created inside Syncopy’s temporary storage folder.

Returns

Nothing

Return type

None

See also

compute

management routine controlling memory pre-allocation

write_log(data, out, log_dict=None)

Processing of output log

Parameters
  • data (syncopy data object) – Syncopy data object that has been processed

  • out (syncopy data object) – Syncopy data object holding calculation results

  • log_dict (None or dict) – If None, the log properties of out is populated with the employed keyword arguments used in computeFunction(). Otherwise, out’s log properties are filled with items taken from log_dict.

Returns

Nothing

Return type

None

See also

process_metadata

Management of meta-information